Introduction to Number and Brightness analysis: the N&B approach
Recent developments in Image Correlation Spectroscopy

1. From single point fluctuation measurement to the analysis of entire images

2. ICS techniques in the confocal microscope and in the TIRF configuration using cameras

3. Could also be used with the spinning disk approach

RICS analysis of diffusion
tlICS and klICS binding map
STICS and STICCS Velocity maps using
Number and Brightness map (N&B)
Why we need N&B? What kind of biological questions can it answer that

Intensity
RICS
FRAP
cannot answer?

How to measure the state of aggregation of proteins? For example the formation of dimers or oligomers?
Why is this question important?
Monomer-dimer equilibria in a membrane
Protein aggregation of misfolded protein in tissues
Protein oligomerization and complexes formation

Interactions
Signalling
Plaque formation
N&B in transfected COS 7 cells using human Htt exon 1 with varying lengths of polyglutamine fused to GFP (Httex1 97QP-GFP, Httex1 46Qp-GFP and Httex1 25QP-GFP)

Giulia Ossato, Elisa Frasnelli, Luca Lanzano, Michelle Digman, J. Lawrence Marsh* and Enrico Gratton

Laboratory for Fluorescence Dynamics, University of California, Irvine,
*Development Biology Center, UCI
97QP after 24 hours
COS7: Zeiss 510 META 1-photon and 2-photon system

1-photon

2-photon
What are the Biological questions?

• Are there precursor aggregates before the plaque stage?

• Are there smaller aggregates (precursors to the large aggregate?

• Can we follow aggregation?

• Can we detect aggregates in the nucleus?
97QP in COS7 cells

QP971010.bin QP971011.bin QP971012.bin

Averaged 4 frames for movie Total frames=100
97QP97 at a very early stage of aggregation

Are the protein aggregates of similar size in these regions?

B map

Larger aggregates only in the appendices
97QP cells
The brightness in the nucleus can surpass the brightness in the cytosol.
Series taken at different times (approximately every 10 minutes)

This indicates immobile fraction

A plaque forms here
25QP cells
The brightness in the nucleus is less than in the cytosol
Conclusions from the N&B analysis

- There are htt proteins everywhere.
- Aggregation starts earlier in the cytoplasm and later inside the nucleus.
- Probably only monomers or small aggregates can migrate to the nucleus.
- In the cytoplasm, as the aggregates become larger, the B value starts to decrease.
- In the nucleus, the aggregation occurs at a slower rate and brighter aggregates are observed after many hours. Eventually, also in the nucleus, the aggregates become too large and start to decrease in apparent brightness.
- When a plaque forms, the intensity in the cytosol decreases and also the brightness decreases.
Questions

How much Cam is “free” to respond to external Ca changes?

What is the spatial distribution of Cam in the cell?

Does the spatial distribution of Cam changes at different extracellular Ca levels?

Methods

RICS, to measure the local diffusion coefficient of Cam

N&B, to measure the state of aggregation of Cam

COS-7 cells transfected with different GFP constructs
The conformational transitions of calmodulin affect its binding in a wide assortment of biological processes such as neurotransmitter production and release, muscle contraction, nerve growth, metabolism, apoptosis, muscle growth, inflammation, membrane protein organization, cytoskeleton movement.

Calmodulin has at least three stable conformations, which are affected by the occupancy of calcium.

Therefore, we want to observe these conformational transitions!

Diffusion in solution

TABLE I

<table>
<thead>
<tr>
<th>Protein</th>
<th>D(μm²/s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>GFP</td>
<td>89±20</td>
</tr>
<tr>
<td>GFP</td>
<td>82±10</td>
</tr>
<tr>
<td>GFP_CaM</td>
<td>80±10</td>
</tr>
<tr>
<td>GFP-CaM</td>
<td>72±4</td>
</tr>
<tr>
<td>GFP-CAMK2</td>
<td>20±4</td>
</tr>
<tr>
<td>GFP-CAMK2</td>
<td>20±1</td>
</tr>
<tr>
<td>RISC</td>
<td></td>
</tr>
<tr>
<td>2p_FCS</td>
<td></td>
</tr>
<tr>
<td>2p_FCS</td>
<td></td>
</tr>
<tr>
<td>2p_FCS</td>
<td></td>
</tr>
</tbody>
</table>
There are at least two components that diffuse with different rates. The slow component is associated with the protein in vesicles. There is also an immobile component, which is always subtracted from the RICS measurement.
Variance/Intensity av = 1.152

Image Brightness Brightness components analysis

GFP

Variance/Intensity av = 1.154

GFP+nICAMK2

Variance/Intensity av = 1.167

GFP-CAMK2
<table>
<thead>
<tr>
<th>Component</th>
<th>Image</th>
<th>Zoom</th>
<th>Brightness</th>
<th>Components</th>
</tr>
</thead>
<tbody>
<tr>
<td>+Ca</td>
<td></td>
<td></td>
<td></td>
<td>1.188</td>
</tr>
<tr>
<td>-Ca</td>
<td></td>
<td></td>
<td></td>
<td>1.173</td>
</tr>
<tr>
<td>+Ca</td>
<td></td>
<td></td>
<td></td>
<td>1.175</td>
</tr>
<tr>
<td>-Ca</td>
<td></td>
<td></td>
<td></td>
<td>1.190</td>
</tr>
</tbody>
</table>

Variance/intensity av = 1.265
Variance/intensity av = 1.235
Variance/intensity av = 1.190
Variance/intensity av = 1.175
Cam-GFP + CAMK2

<table>
<thead>
<tr>
<th></th>
<th>Image</th>
<th>Zoom</th>
<th>Brightness</th>
<th>Components</th>
</tr>
</thead>
<tbody>
<tr>
<td>+Ca</td>
<td></td>
<td></td>
<td></td>
<td>Variance/intensity av= 1.279</td>
</tr>
<tr>
<td>-Ca</td>
<td></td>
<td></td>
<td></td>
<td>Variance/intensity av= 1.264</td>
</tr>
<tr>
<td>+Ca</td>
<td></td>
<td></td>
<td></td>
<td>Variance/intensity av= 1.316</td>
</tr>
<tr>
<td>-Ca</td>
<td></td>
<td></td>
<td></td>
<td>Variance/intensity av= 1.280</td>
</tr>
</tbody>
</table>
Conclusions From the N&B and RICS analysis

Only a small fraction of Cam is free

Cam is associated with other protein partners both in the calcium free and calcium bound form

There is a map of cam concentration in the cell

In the nucleus, Cam is less concentrated and it appears to have the brightness of a monomer

However, the diffusion in the nucleus indicates that Cam is bound to some other protein

We needed both the RICS and the N&B analysis to respond to the initial question
The N&B project

Purpose: Provide a pixel resolution map of molecular number and aggregation in cells

Method: First and second moment of the fluorescence intensity distribution at each pixel

Source: Raster scanned image obtained with laser scanning microscopes TIRF with fast cameras Spinning disk confocal microscope

Output: The N and B maps, B vs intensity 2D histogram

Tools: Cursor selection of pixel with similar brightness Quantitative analysis of center and std dev of the ϵ and n distribution Tools for calibration of analog detectors

Tutorials: mathematical background, data import, analysis examples (our web site
Calculating protein aggregates from images

This analysis provides a map of $\langle N \rangle$ and brightness (B) for every pixel in the image. The units of brightness are related to the pixel dwell time and they are “counts/dwell time/molecule”.

\[
\langle k \rangle = \frac{\sum k_i}{K}, \quad \sigma^2 = \frac{\sum (k_i - \langle k \rangle)^2}{K}
\]

\[
B = \frac{\langle k \rangle}{\langle N \rangle} = \frac{\sigma^2}{\langle k \rangle}
\]

\[
\langle N \rangle = \frac{\langle k \rangle^2}{\sigma^2}
\]

σ^2 = Variance
$\langle k \rangle$ = Average counts
N = Apparent number of molecules
B = Apparent molecular brightness
The Basic Idea

Variance due to particle fluctuations
\[\sigma_n^2 = \varepsilon^2 n \]

Variance due to detector shot noise
\[\sigma_d^2 = \varepsilon n \]

Average intensity in one pixel
\[<k> = \varepsilon n \]

\[
B = \frac{\sigma^2}{<k>} = \varepsilon + 1
\]

\[
N = \frac{<k>^2}{\sigma^2} = \frac{\varepsilon n}{\varepsilon + 1}
\]
Brightness and number of molecules can be measured independently

The mobile fraction has B dependent on the laser power.

Immobile fraction has B=1, independently of laser power.

Brightness vs laser intensity

Brightness vs concentration

Number of particles vs concentration
N&B in cells expressing cytoplasmic mEGFP (no aggregates)
The effect of the immobile part
Fluorescent beads in a sea of 100nM Fluorescein.

\[\varepsilon_m = \frac{\varepsilon}{1 + R} \]

\[n_m = n(1 + R) + \frac{I_{im}(1 + R)}{\varepsilon} \]

Selecting fluorescein

Selecting beads

Monomer-octamer series
Paxillin aggregation and dynamics

Average intensity (0-3.184 c/s)
B map (0.8-1.4) (clustering)

Calculated using 500 frames
Selecting monomers and clusters. Distribution of aggregates

Green selects monomer centered at \(B=1.034 \pm 0.019 \)

Blue selects aggregates centered at \(B=1.274 \pm 0.059 \)

Variance/intensity \(\text{av}=1.073 \)
Movies of adhesions assembling-disassembling

100 Frame averages

Selecting large aggregates

0 to 99

100 to 199

200 to 299

300 to 399

400 to 499

pixel 6,89 average intensity in a region 8x8

pixel 67,120 Intensity change in a 8x8 region

pixel 104,68 A= 0.00000 k= 0.00000 B= 0.00000

Counts

Counts

Counts

Counts

Time (s)

Linear tau

Time (s)
Summary

• Spatio-temporal correlations are needed to describe the dynamics and interactions in cells.

• RICS gives us an approach to obtain fast dynamics in an image without introducing new hardware.

• The RICS approach allows us to perform FCS experiments even in the presence of slowly moving and immobile structures.

• N and B analysis can be done at every point of the image, thereby providing a new contrast method in microscopy.
Questions and discussion

• Where we stand?
• What is needed?
• Current limits of optics and fluorescence
• New optical instruments
• New fluorescent probes
• Other methods to study dynamics in cells
The Phasor Approach and Digital Frequency Domain FLIM

Enrico Gratton
Laboratory for Fluorescence Dynamics
University of California at Irvine
Outline

• Background: Lifetime

• Intro to Fluorescence Lifetime Imaging Microscopy

• Motivation for FLIM

• The Phasor approach
Why do FLIM?

FLIM is used for:

• FRET

• Intracellular mapping of ion concentration and pH imaging

• Biochemical reactions (oxidation/reduction) processes
 • NAD and NADH

• Long lifetime imaging (phosphorescence).
 • For example O₂ concentration in the cell or in tissues
Conceptual approaches to Spectroscopy

<table>
<thead>
<tr>
<th>Using the Spectra</th>
<th>Using the fluorescence decays</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\lambda) Excitation (\lambda) emission</td>
<td>Lifetime Components</td>
</tr>
<tr>
<td>Spectral demixing</td>
<td>Multiexponential analysis</td>
</tr>
</tbody>
</table>

1) Identification
 Molecular Species

2) Demixing of multiple species in a pixel

3) Identification of processes: FRET

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>
The challenges of FLIM

• At every pixel there are contributions of several fluorescent species, each one could be multi-exponential.

• To make things worse, we can only collect light for a limited amount of time (100-200 microseconds per pixel) which result in about 500-1000 photons per pixel.

• This is barely enough to distinguish a double exponential from a single exponential decay.

• Resolving the decay at each pixel in multiple components involves fitting to a function, and is traditionally a complex computational task “for experts only”.

A major problem is data analysis and interpretation
Major issues with FLIM

- Rather difficult technique
- Fitting is slow
- Results depend on initial conditions
- Interpretation requires expertise

Can we avoid all these problems?

- No expertise necessary
- Instantaneous results
- Independent of initial choices
- Quantitative results
- Intuitive simple interface

We propose a change in paradigm: Use a different representation of the decay where each molecular species has its own unique representation and where each process (FRET, ion concentration changes) is easily identified.
A sample is flashed many times by a short duration laser source.

The histogram of the time intervals between the excitation flash, and 1st emitted photon is measured.

A sample is excited by a modulated light source.

The fluorescence emission has the same frequency but is modulated and phase-shifted from the excitation source.

APPENDIX 2. PHASE AND MODULATION
LIFETIME RELATION

We have assumed that a heterogeneous emitting population, in the absence of excited state reaction, will demonstrate a phase lifetime which is always less than the modulation lifetime. The algebraic demonstration of this will be somewhat reminiscent [11, 12]. We present here a brief and more intuitive demonstration of the phenomenon.

One may make a simple geometrical representation of the phase delay and relative modulations as shown in Fig. 11. Here we depict a vector of length t in red and its angle with the x-axis where 0 represents the phase delay and A the relative modulation. Since for a single exponential decay we have the relation \(M = \cos \phi \), the resultant of the vector is constrained to lie on a circle of radius 1/2 with a center at (1/2, 0). The intercept of the extremities of the vector with the line through \(x = 1 \) equals the phase \(\phi = \arctan \). This circle is universal for single exponential systems irrespective of the lifetime or modulation frequency. We note that the X and Y intercepts of the vector correspond to our previously defined \(\theta_H \) and \(\theta_B \) functions (since \(\theta_H = \arctan \) and \(\theta_B = \arctan \)).

Figure 11 illustrates the case of two exponential decays with phase delays \(\phi_1 \) and \(\phi_2 \). The final fluorescence observed is represented by the vector sum, \(\theta_\text{final} \), of the two components and given an observed phase delay \(\phi \). Again we see that the intercept of the extremities of the \(\theta_\text{final} \) vector with the \(x = 1 \) line corresponds to \(\phi = \arctan \). The value of \(\theta_\text{final} \), however, corresponds to the line segment BO. This observation follows from the fact that the triangle OAB,

\[\frac{BO}{AO} = \sin \phi \]

which has a right angle, is congruent to the triangle OOB, which also has a right angle. Hence, from the ratios of the sides we have:

\[\frac{BO}{AO} = \sin \phi \]
How to calculate the components g and s of a phasor from the time decay?

A sample is flashed many times by a short duration laser source.

The interval between the excitation flashes, and 1st excited photon is measured.
How to obtain the lifetime distribution?

From decay data

Fitting of exponentials

Multiexponential analysis

Lifetime distribution
Simple rules to the Phasor plot:

1) All single exponential lifetimes lie on the “universal circle”
2) Multi-exponential lifetimes are a linear combination of their components
3) The ratio of the linear combination determines the fraction of the components
Phasors for common fluorophores. EGFP (green), autofluorescence (blue) and mRFP1 (red) (at 880 nm -2 photon excitation) . In any given pixel, mixture of EGFP and autofluorescence must be on the yellow line, mixtures of EGFP and mRFP1 must be on the red line. Mixtures of three of them must be inside the triangle with the corner in the 3 phasors.
Examples of phasors identification

Digman et al, Biophys. J. 2007
Separating Different Single exponential lifetimes using the ISS Fast FLIM system

Fluorescein Mixture Rhodamine B1
Pax-eGFP CHO-k1 in collagen
referenced with Fluorescein @ 905nm

Lifetime of EGFP

Combinations of Lifetimes

Lifetime of Collagen
How to identify processes?

Delay of the excitation of the acceptor due to FRET moves the acceptor phasor to the left (yellow arrow). If the delay is sufficiently long, the phasor could fall outside the semicircle. The donor phasor moves to the right (red arrow) due to quenching (shorter lifetime).
The principle of the Calculator

Purpose: to generate trajectories in the phasor plot corresponding to different processes

At present, there are 4 functions programmed

1. Fractional contribution of two species give the phasor of the two individual species
2. Ion concentration given the phasor of the bound and free form and the pK of the indicator
3. FRET efficiencies from the observation of the donor only with background and fraction of donor unquenched
4. FRET efficiency using the observation of both donor and acceptor with given background and fraction of donor unquenched and acceptor excitation
If we have a donor with a single exponential decay that is quenched by the presence of an acceptor. What should we expect?

The lifetime of the donor is quenched. The FRET efficiency can be calculated by the ratio of the two lifetimes.

Why is the trajectory an arc rather than a line to the (1,0) point?
• Can we quench up to zero lifetime?

• Even if we quench all the DONOR, we still are left with the autofluorescence.

• The final point is not at zero but at the autofluorescence phasor!!!
The FRET Calculator

After all the Donor is quenched, what is left? The cell autofluorescence!!

As the lifetime of the Donor is quenched, the phasor of the quenched Donor is added to the phasor of the autofluorescence.

If there is a fraction of Donor that cannot be quenched, the final point will be along the line joining the Donor with the autofluorescence phasor.
Several regions the image can be identified corresponding to a) background (2 exponentials) b) cell 1 bright (2 exponentials) c) cell 2 dim, d) cell junctions dim.

Image of cell expressing uPAR-EGFP and uPAR-MRFP receptor. Upon addition of a ligand, the receptor aggregates. FRET should occur at the cell junctions
The pitfall of “conventional” FLIM analysis

Image obtained using B&H 830 in our 2-photon microscope

Donor+acceptor+ligand. A) intensity image after background subtraction, B) τ_p image

Shorter lifetime region could be interpreted to be due to FRET
Identification of FRET using the phasor plot

FRET only occurs at the cell junctions

Selecting regions of the phasor diagram. Selecting the region in A' (donor + acceptor) the part in white lights up (A). Selecting the region in B' (autofluorescence) the part in white in lights up (B). The color scale in B' has been changed to better show the region of the autofluorescence. Selecting the region in C' (along the donor quenching line as shown in D) the part in white in at the cell junction lights up in C.
Features of the new approach

Many of the obstacles in FLIM data analysis can be removed. The accuracy of lifetime determination is improved.

The speed of data analysis is reduced to almost instantaneous for an entire image or several images.

The analysis is “global” over the image and across images.

The interpretation of the FLIM experiment is straightforward. Minimal prior spectroscopy knowledge is needed.

The Phasor analysis method can be applied to all modes of data acquisition (frequency-domain and time-domain).

Ion concentrations can be calculated.